Tasarım Temelli Fen Eğitimine Yönelik Öğrenci ve Öğretmen Değerlendirmeleri

Esra Bozkurt Altan, Engin Karahan

Abstract


Bu araştırmada “Tasarım Temelli Fen Eğitimi” (TTFE) esas alınarak hazırlanan “Isı Yalıtımı Ülke Kazanımı” etkinliğine yönelik öğrenci değerlendirmelerinin ve uygulamayı yapan fen bilimleri öğretmeninin uygulama deneyimine yönelik görüşlerinin tespit edilmesi amaçlanmıştır. Araştırmanın modeli bütüncül tek durum çalışmasıdır. Araştırmanın çalışma grubunu altıncı sınıfta öğrenim gören 32 öğrenci ve 1 öğretmen oluşturmaktadır. Araştırmanın, öğrenci değerlendirmelerine yönelik verileri anket (TTFE Öğrenci Değerlendirmeleri Anketi) ve odak grup görüşme ile toplanmış, betimsel analiz (anket) ve içerik analizi (odak grup görüşme) ile çözümlenmiştir. Öğretmen görüşleri ile ilgili veriler ise yapılandırılmamış görüşme ile toplanmış, betimsel analiz ile çözümlenmiştir. Öğrenciler TTFE sürecini fen içeriğini öğrenmeyi sağlayıcı, günlük yaşam ile ilişkili, ilgi çekici ve motive edici olarak değerlendirmiştir. Uygulama öğretmeni de TTFE sürecini gerçek yaşama hazırlayıcı, mühendislik tasarım sürecini fark etmelerini destekleyici ve öğrenmeye motive edici yönüyle olumlu olarak değerlendirmiştir. TTFE esas alınarak hazırlanan “Isı Yalıtımı Ülke Kazanımı” etkinliği fen derslerinde STEM eğitimini gerçekleştirmek isteyen öğretmenler için alternatif öneri olabilir.


Keywords


Tasarım temelli fen eğitimi, STEM eğitimi, ısı yalıtımı

Full Text:

PDF (Türkçe)

References


Apedoe, X.S., Reynolds, B., Ellefson, M.R., & Schunn, C.D. (2008). Bringing engineering design into high school science classrooms: The heating/cooling unit. Journal of Science Education and Technology, 17(5), 454-465.

Bozkurt Altan, E. ve Ercan, S. (2016). STEM education program for science teachers: perceptions and competencies. Journal of Turkish Science Education, 13(Special issue), 103-117.

Braund, M., Lubben, F., Scholtz, Z., Sadeck, M., Hodges, M. (2007). Comparing the effect of scienctific and socio-scientific argumentation tasks: lessons from South Africa. School Science Review, 88(324), 67-76.

Breiner, J.M., Harkness, S.S., Johnson, C.C., & Koehler, C.M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.

Cardella, M., Atman, C. J., Turns, J. & Adams,R. (2008). Students with differing design processes as freshmen: case studies on change. International Journal of Engineering Education 24(2):246-259.

Crismond, D. (2001). Learning and using science ideas when doing investigate-and-redesign tasks: A study of naive, novice, and expert designers doing constrained and scaffolded design work. Journal of Research in Science Teaching, 38(7), 791–820.

Fortus, D., Dershimer, R.C., Krajcik, J., Marx, R.W., & Mamlok-Naaman, R. (2004). Design-based science and student learning. Journal of Research in Science Teaching, 41(10), 1081-1110.

Furner, J. M., & Kumar, D. D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science & Technology Education, 3(3), 185-189.

Karahan, E. (2014). STEM özelinde fen ve mühendislik eğitimi. https://enginkarahan.com/2014/08/05/stem-ozelinde-fen-ve-muhendislik-egitimi/ 3 Temmuz 2016 tarihinde indirilmiştir.

Lee, Y. C. & Grace, M. (2012). Students’ reasoning and decision making about a socio scientific issue: A cross-context comparison. Science Education, 96(5), 787-807.

Leonard, M. & Derry, S. (2011). “What’s the science behind it?” The interaction of engineering and science goals, knowledge, and practices in a design-based science activity (WCER Working Paper No. 2011-5). University of Wisconsin–Madison.

Lemons, G., Carberry, A., Swan, C., Jarvin, L., & Rogers, C. (2010). The benefits of model building in teaching engineering design. Design Studies, 31(3), 288-309.

Marshall, C. & Rossman, G. B. (2006). Designing qualitative research (4th Edition). USA: Sage Publications.

MEB (2016). STEM Eğitim Raporu. Ankara: Milli Eğitim Bakanlığı, Yenilikçi Eğitim Teknolojileri Müdürlüğü. ISBN: 978-975-11-3989-4. http://yegitek.meb.gov.tr/STEM_Egitimi_Raporu.pdf adresinden 7 Haziran 2017 tarihinde indirilmiştir.

MEB (2018). Fen bilimleri dersi öğretim programı. Ankara: MEB Yayınları.

Mehalik, M.M., Doppelt, Y., Schuun, C.D. (2008). Middle-school science through design-based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71- 85.

Merriam, S. B. (2013). Nitel araştırma desen ve uygulama için bir rehber (S. Turan, Çev.). Ankara: Nobel Yayın Dağıtım.

Moore, T. J., Tank, K. M., Glancy, A. W., Kersten, J. A., & Stohlmann, M. S. (2013). “A framework for implementing engineering standards in K-12”. Paper presented at the 2013 Annual Meeting of the Association of Science Teacher Educators. Charleston: South Carolina.

Moore, T.J., Stohlman, M.S., Wang, H.H., Tank, K.M., Glancy, A.W., & Roehrig, G.H. (2014). Implementation and integration of engineering in K-12 STEM education. In S. Purzer, J. Strobel, & M. Cardella, (Eds.), Engineering in Precollege Settings: Synthesizing Research, Policy and Practices. West Lafayette, IN: Purdue University Press.

National Academy of Engineering [NAE] & National Research Council [NRC] (2009). Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: National Academies Press.

National Research Council. (2012). Monitoring progress toward successful K-12 STEM education: A nation advancing? Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press.

Pata, K., Zimdin, L. (2008). Teaching for environmental awareness and conceptual coherence of air related problems. Thinking and acting outside the box. A European contribution to the UN Decade of Education for Sustainable Development: CEEE 10th conference (Conference on Environmental Education in Europe). Ed. Paul Pace. Malta, Valletta: Malta University.

Resnick, L.B. (1986). Mathematics and science learning: A new conception. Science, 220(4596), 477-478.

Roth, W. (2001). Learning science through technological design. Journal of Research in Science Teaching, 38(7), 768-790.

Sadler, P.M., Coyle, H.P., & Schwartz, M. (2000). Engineering competitions in the middle school classroom: Key elements in developing effective design challenges. The Journal of the Learning Sciences, 9(3), 299-327.

Schnittka, C., & Richards, L. (2008, June), Teacher and student feedback about engineering design ın middle school science classrooms: a pilot study. Pittsburgh, Pennsylvania: Annual Conference & Exposition. 12 April 2012 retrieved from https://peer.asee.org/3340

Silk, E.M., Schunn, C.D., & Cary, M.S. (2009). The impact of an engineering design curriculum on science reasoning in an urban setting. Journal of Science Education and Technology, 18(3), 209-223.

Smith, J., & Karr-Kidwell, P. (2000). The interdisciplinary curriculum: A literary review and a manual for administrators and teachers. Retrieved from ERIC database. (ED443172).

Wendell, K. B., Connolly, K. G., Wright, C. G., Jarvin, L., Rogers, C., Barnett, M., & Marulcu, I. (2010). Incorporating engineering design into elementary school science curricula. Louisville, KY: American Society for Engineering Education Annual Conference & Exposition. 20 March 2012 retrieved from http://ceeo.tufts.edu/documents/conferences/2010kwkccwljcrmbim.pdf

Woodburry, S., & Gess-Newsome, J. (2002). Overcoming the paradox of change without difference: A model of change in the arena of fundamental school reform. Educational Policy, 16(5), 763-782.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

 

 

Creative Commons License
Elementary Education Online is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN: 1305-3515